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DISCLAIMER 

The contents of this report reflect the views of the author(s) and not necessarily the views of the 
University.  The author(s) are responsible for the facts and the accuracy of the data presented 
herein.  The contents do not necessarily reflect the official views or policies of either the North 
Carolina Department of Transportation or the Federal Highway Administration at the time of 
publication.  This report does not constitute a standard, specification, or regulation. 

Executive Summary 
This project has developed an artificial intelligence (AI) tool for automated analysis, 

extraction, and annotation of roadside features on rural roads from existing video log data. The 
project was funded by the US Department of Transportation’s Safety Data Initiative (SDI) 
through the North Carolina Department of Transportation (NCDOT). The developed AI tool uses 
a deep learning-based computer vision model to detect safety features such as guardrails and 
utility poles in geographically distributed NC rural roads with a high level of accuracy. 
Specifically, we applied the AI tool to two features, namely guardrail and utility pole. With only 
about 1.5% of 2.6 million unlabeled images annotated by domain experts, we achieved 99% 
accuracy for the guardrail classifier evaluated on a randomly selected holdout test set with over 
12K images and 90% accuracy evaluated on a class-balanced holdout test subset with 642 total 
images. There were no class imbalance issues for the utility pole classification since about 64% 
of images in the AL sampling space contain utility poles. With only about 0.68% of 2.6 million 
unlabeled images annotated by domain experts, we obtained 88% accuracy for the utility pole 
classifier evaluated on a randomly selected holdout test set with 960 total images.   

The AI tool used the Xception deep learning neural network architecture [1] to extract 
various features from the video log data which were then used in an iterative active learning 
(AL) computer vision model training process. The objective of AL is to minimize the number of 
instances that require human annotations while still producing a model with satisfactory 
performance, which can be achieved via effective sampling or query strategies. This training 
process was directly supported by a web-based annotation tool that enables rapid quality control 
and collection of end-user feedback throughout the data annotation process. More specifically, 
this annotation tool allows for the collection of annotations within each iteration of the AL 
process for multiple roadside features, while also enabling visual analysis and assessment of 
model prediction performance in the geospatial context. AL techniques were used to direct 
human annotators to label images that would most effectively improve the model aimed at 
minimizing the number of required training labels while maximizing the model’s performance. 
The iterative AL process combined with a common feature extraction backbone allowed fast 
model inference on millions of images in the AL sampling space. This enabled a rapid transition 
between AL rounds while also reducing the computing requirements for each round. 
Specifically, this shared feature extraction backbone approach dramatically improved AL model 
prediction performance, reducing prediction time from about one week to under an hour. Model 
feature extraction weights were then fine-tuned in the last round of AL to obtain the best 
accuracy. Our AI tool can be used to detect roadside objects and be extended to also locate them 
for assessing roadside hazards. Ultimately, the capacity to accurately extract roadside features 
from video log data will help facilitate safety initiatives more efficiently and effectively on the 
state’s rural roadway system. The AI annotation tool and visual geospatial analysis of model 
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predictions can serve as a blueprint that could be scaled and replicated for other jurisdictions and 
states.  

Background 
A key safety performance challenge in both North Carolina (NC) and other states is that 

severe and fatal injury crashes on rural roads are often dispersed across many miles in the 
roadway system. The current process for assessing roadside hazards on NC rural roads is site 
specific and is performed by individual field investigation per location, which is tedious and 
overtly limited given the large network of 48,673 miles of rural roads. 

The goals for this project were to explore what roadside features could be reliably 
collected from videolog utilizing AI methodologies and techniques. The AI process could 
potentially allow NCDOT to assess thousands of miles of rural roadside features with minimal 
staff time. Example roadside features include continuous roadside objects such as guardrail, 
fences, and walls and point roadside objects such as utility poles, guardrail ends, and trees. An 
inventory of where these roadside features exist could allow NCDOT to better assess roadside 
risk along their roads when an errant vehicle leaves the roadway. NCDOT does not currently 
have an inventory of roadside features across the network. In addition to where roadside features 
exist along a network, distance to a feature and side slope to a feature are also important 
attributes that NCDOT does not currently have. The intent of the safety tool developed in this 
project is to enable the identification of roadside features at a systems wide level through an 
automated process, enabling a better understanding of the current road features on an expansive 
rural network. 

In 2018 and 2019, NCDOT collected video log data for all secondary roads, 76 percent of 
which are rural roads. Images in the videolog were acquired by three front facing cameras every 
26 feet along the roadways; an example set of three images can be seen in Figure 1. This wealth 
of data has provided NCDOT a unique and timely opportunity to partner with University of 
North Carolina (UNC) Highway Safety Research Center (HSRC) and Renaissance Computing 
Institute (RENCI) to develop an AI annotation tool to extract roadside features from the collected 
video log data to facilitate the determination of the safety level of the roadside across a large 
network of rural roads. This capacity will facilitate the identification of systemic safety 
initiatives to reduce fatal and serious injury crashes involving the roadside.  

 

 
Figure 1. Example Annotation of a Guardrail from the Annotation Tool 

For this one-year effort, the AI tool first allowed data analysts and safety researchers to 
semi-automatically annotate video logs with features of relevance to roadside safety. Using a 
web-based visualization tool, it employed deep learning-based computer vision methods to 
identify these features in unlabeled video, using an active learning feedback loop to rapidly 
direct human annotators to the most valuable segment of video for labeling, greatly speeding up 
the annotation process. The effectiveness of this approach was outlined in this report and was 
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illustrative of how an iterative approach to developing these models could be key to reaching 
successful levels of performance. The active learning feedback loop helped to improve the ability 
of the AI tool to identify the selected features, and the additional manual effort would go from 
annotation to correction as the machine learning improved. This feedback loop would continue 
until the AI tool was able to reliably identify features automatically. 

Methodological Approach 
We used an iterative process to create a training data set and a predictive image 

classification model to extract safety-related roadside features from video log data. Figure 2 
below shows our iterative process, and is further described below 
  

 
Figure 2. Our AI Tool Iterative Processing Pipeline 

First, we trained a baseline model using Xception architecture [1] via Transfer Learning 
(TL) by leveraging the primary road guardrail assessment data NCDOT collected in 2017 which 
was manually extracted from the primary road video log data and provided valuable information 
for us to prepare labeled images for training; second, we used this baseline model to extract 
features in a common feature extraction backbone and make predictions for millions of unlabeled 
secondary road images in the AL sampling space; third, we computed most informative samples 
for AL based on model predictions and extracted features; fourth, these samples were then fed 
into the annotation tool to collect expert annotations for these selected sample images; fifth, 
manual annotations were exported from the annotation tool and used to train a new model as part 
of AL; sixth, the new model was used to make fast predictions with a common feature extraction 
backbone using the extracted features from the baseline model, and the new model predictions 
were fed into AL sampling in step 3, and the AL loop continued until the new model reached our 
target performance metrics. Last, the weights in the final AL round model including the feature 
extraction backbone were fine-tuned to obtain the best model accuracy. Through this AL 
process, we achieved 90% accuracy for the final guardrail model starting from the initial 75% 
accuracy for the initial baseline model and the 88% accuracy for the final utility pole model 
starting from the initial 66% accuracy for the initial model evaluated on a balanced holdout test 
set. We describe our AI tool processing pipeline and methodology in detail next. 

Baseline Model Training via Transfer Learning 
We used the Xception [1] network pre-trained on ImageNet to train guardrail models on 

the whole data set and the two-lane only subset via TL. Xception was a deep CNN architecture 
from Google inspired by its predecessor Inception, where Inception modules have been replaced 
with depthwise separable convolutions. Xception architecture has the same number of 
parameters as Inception V3 but has better performance than Inception V3 due to a more efficient 
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use of model parameters. Chollet [1] showed that Xception slightly outperformed Inception V3 
on the ImageNet dataset which Inception V3 was designed for, and significantly outperformed 
Inception V3 on a larger image classification dataset comprising 350 million images and 17,000 
classes. 

We used TensorFlow (TF) [2] 2 as the Deep Learning (DL) framework which includes 
Xception architecture with pre-trained weights that can be directly loaded in our application. We 
replaced the top layer of the Xception with three stacked layers: a Global Average Pooling layer 
to reduce the number of parameters by 100-fold, followed by a dropout layer with a rate of 0.25 
to help prevent overfitting, and a fully connected layer on the top with a sigmoid activation for 
binary classification with the binary cross-entropy as the loss function. We used an Adam [3] 
optimizer with a learning rate of 0.001 initially to train the top classification layer only for 10 
epochs which improved the model accuracy from the initial 54% to about 91%. Then we kept the 
bottom two block layers frozen and opened up the top 12 block layers of Xception for fine tuning 
the pretrained weights with a very low learning rate of 1e-5. In addition, we used the model 
checkpoint callback supported by TF to monitor validation loss during training to only save the 
best performing model with minimal validation loss at the end of each epoch. Figure 3 shows the 
accuracy and loss plots of the guardrail models trained on full data and 2-lane only subset data 
during fine tuning, from which we can see that the full data model started overfitting after epoch 
7 (top) and the 2-lane only model started overfitting after epoch 10 (bottom). We selected epoch 
7 full data model and epoch 10 2-lane only model with minimal validation losses as the baseline 
model candidates. Overfitting occurs when the model fits too well against its training data but 
does not fit well against its validation data. When overfitting happens, the model will not 
generalize or perform well against new unseen data for prediction.  To make sure that our model 
converged, we evaluated the model on validation data at the end of each epoch to make sure the 
model we selected did not overfit.  
 

 
Figure 3. Accuracy and Loss Plots of the Guardrail Models Trained on Full Data (Top) and 2-Lane Only Data 

(Bottom) During Fine Tuning 
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We evaluated two model candidates on the 2-lane only balanced primary road test set 
which aligned more with the secondary road target set. Two model candidates had similar 
performance although the 2-lane only model has a little better accuracy 97.9% than 97.7% of the 
full data model. In addition, we compared predictions of two models on a NC eastern region of 
741,476 joined images in the secondary road target set and found two models have the same 
predictions for 98% of all images. We manually inspected a subset of 300 randomly selected 
images and compared the receiver operating characteristic (ROC) area under curve (AUC) scores 
of both model predictions on the subset, with 100 out of the total image set, 100 out of the 98% 
common prediction image set, and the other 100 out of the 2% different prediction image set. 
Both manual inspection and AUC scores indicated the 2-lane data model performed a little better 
(0.903 AUC score for the 2-lane model vs. 0.853 for the full data model). As a result, we 
selected the 2-lane data model as our baseline guardrail model for the subsequent AL. 

Common Feature Extraction Backbone for AL 
Our objective was to create safety feature models via AL to make predictions in our 

unlabeled secondary 2-lane rural road target set (over 40 thousand miles) composed of 14 
divisions across NC. NCDOT transportation safety experts selected 4 geographically 
representative divisions in the target set that we used to create the AL sampling image space. 
There are about 2.6 million joined image samples in the AL sampling space from which we 
selected the most informative samples for manual labeling based on model predictions from the 
previous AL round aimed at achieving high model accuracy using as few labeled instances as 
possible. 

To ensure a smooth transition between AL rounds, predictions of the model from one AL 
round over all 2.6 million joined images or 7.8 million single view images in the AL sampling 
space must be finished fast enough to start the next AL round in a reasonable amount of time. To 
address this AL performance issue, we employed a common feature extraction backbone 
approach through the iterative AL process. In particular, feature extraction from input images 
was performed by a common backbone network in a single pass and shared across AL rounds. 
Our common feature extraction backbone consisted of a set of convolution and polling layers in 
the Xception architecture to produce a feature map containing higher-level summary information 
of images. Throughout the AL rounds, only the top fully connected classification layer was 
trained with 2048 input parameters from the shared common backbone network and one output 
parameter for binary classification with sigmoid activation. This shared feature extraction 
backbone approach dramatically improved AL model prediction performance, reducing 
prediction time from about one week to under one hour.  

In addition, having a shared common feature extraction backbone across the AL rounds 
allowed for methods such as similarity-based sampling for effective AL sampling under class 
imbalance via analysis of similarities of extracted image feature vectors in the feature embedding 
space. 

Annotation Tool for Supporting AL 
We developed a web-based tool, Roadway Hazard Finder (RHF), to collect annotations 

from transportation safety experts to support AL. As a central component of our AI system, RHF 
was tightly integrated with our offline DL/AL pipeline, enabling easy ingestion of image samples 
selected from offline AL into the tool for annotation, and uploading of collected annotations 
from the tool for offline AL model training. The primary annotation interface receives images for 
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annotation prioritized by the AL system and provides a simple point and click interface for 
annotating the images based on the current feature of interest. The annotation tool also provides 
diagnostic interfaces, such as a route browser (Figure 4) that enables the user to virtually drive a 
particular route while visualizing a plot of all predictions and annotations along the route, and a 
prediction errors table (Figure 5) that enables the user to organize and review any discrepancies 
between the model predictions and user annotations. 

The annotation tool was designed to be versatile and easily re-purposed for other similar 
tasks. For example, we used the annotation tool internally to prepare the holdout test sets for 
objectively assessing guardrail and utility pole models through the AL process. Due to the 
significant class imbalance for the guardrail feature (only about 2.7% of 2.6 million unlabeled 
images in the AL sampling space contain guardrails), we annotated 12,057 randomly selected 
images across NC eastern, central, and western regions in our AL sampling space in order to 
collect 321 positive images with approximately even distributions across the three regions. Given 
the class imbalance in this whole holdout test set, we also randomly selected 321 negative 
images out of the 11,736 total to create a balanced holdout test set to objectively assess guardrail 
model performance. On the other hand, the utility pole data classifications do not exhibit class 
imbalance. As a result, we annotated 960 randomly selected images across three representative 
NC regions and collected 613 positive images and 347 negative images as the pole holdout test 
set for assessing performance of AL pole models. 
 

 
Figure 4. Route Browser with Scatterplot Depicting Predictions and Annotations 
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Figure 5. Prediction Errors Table 

Active Learning Sampling Strategies 
Our goal for AL sampling strategies was to sort images for human annotation in the order 

of likelihood that the manually labeled images would contribute most to improve the model 
performance. Specifically, an offline process computed an uncertainty score for each image 
sample that corresponded to its sampling order determined by an AL sampling strategy. These 
uncertainty scores were then ingested into the annotation tool and used to return images for 
annotation in the order intended by the sampling process. We used the baseline model as 
described in the earlier section Baseline Model Training via Transfer Learning to predict 
guardrail probabilities of unlabeled images in our AL sampling space before we started the AL 
process.  

The objective of AL is to minimize the number of instances that require human 
annotations while still producing a model with satisfactory performance, which can be achieved 
via effective sampling or query strategies. Most AL approaches employ the uncertainty sampling 
strategy [4] to select data along the decision boundary where the model is most uncertain for 
labeling. However, these instances along the decision boundary may not be representative of the 
unlabeled data pool and may sometimes lead to the selection of unrepresentative outliers or too 
many common class instances in data with significant class imbalance. To address these issues, 
some other heterogeneity-based sampling strategies may be employed to sample from instances 
that are dissimilar to what has already been sampled [5]. For example, the query-by-committee 
sampling approach [6] uses a committee of different classifiers to predict the class label of each 
unlabeled instance and selects those instances for which the classifiers disagree most. Different 
strategies have different trade-offs depending upon the underlying application and data 
distribution. We employed uncertainty sampling and the query-by-committee strategies to fit 
better with our application and data distribution in conjunction with a similarity-based sampling 
strategy we developed by adapting ideas proposed in the similarity-based AL framework [7] to 
address the significant class imbalance problem for guardrail classification. Specifically, we 
developed a similarity-based sampling strategy by adapting the rare class and dissimilar sample 
selection ideas proposed in the SAL framework to take into account the extreme class imbalance 
for guardrail classification. Similar to the SAL framework, our sampling strategy attempted to 
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sample more rare class samples effectively as well as images dissimilar from those already in the 
training dataset by sorting similarity scores computed in the feature embedding space. However, 
this algorithm resulted in many noisy outlier images being selected which did not represent the 
real distribution of the new data. We applied some basic image processing techniques to filter out 
those noisy outlier images with extreme over- or under-exposure to capture those unlabeled 
images of high entropy (most uncertainty) and diversity with less chance of selecting trashy 
images.  

AL Model Training 
We used the Xception feature extraction backbone from the baseline guardrail model 

throughout the iterative AL model training process. Specifically, only the top fully connected 
classification layer with 2049 parameters were trained through the AL rounds with the weights in 
the shared common feature extraction backbone frozen. We randomized initial weights from a 
uniform distribution and reset biases to zeros for the top classification layer before training for 
each AL round which we found was critical for good model convergence.  

The baseline guardrail model was trained on joined images of left, front, and right views 
since the guardrail assessment data we used to prepare training data could only be mapped to 
joined images by geographic locations. On the other hand, our captured labeled data include 
annotations for each single view image, enabling us to train AL models on single view images. 
Since we resized our input images with varying resolutions to the original input image size 
299x299 for the Xception architecture, training on joined images would have threefold increase 
in likelihood that some thin, short, faraway features could disappear due to image resizing, which 
would increase FNs in model predictions and challenge models with the conflicting information 
between the annotations and resized images fed to models. As a result, we used collected 
annotations to prepare single view images for training AL models.  

At each AL round, we trained the model using all annotations collected so far randomly 
split into 80% for training and 20% for validation, which created unbalanced training and 
validation data. Some commonly used approaches such as over-sampling rare class or under-
sampling common class instances change the class distributions and don't work well for our 
application. Instead, we adjusted class weights that each training instance carried when 
computing the loss by giving rare class instances more weight than the common class instances. 
We also used early stopping callback supported by TF to stop training when the validation loss 
did not improve for 10 epochs.  

Final Model Weight Fine Tuning 
Although the common feature extraction backbone was used through AL to allow fast 

model training and inference through the AL process enabling quick transition between AL 
rounds, it did set an upper limit for final model accuracy due to less than ideal weights for the 
common backbone. Specifically, since the common backbone was extracted from the baseline 
guardrail model which was trained on primary road joined images, the weights in the common 
backbone may not be satisfactory for the secondary road single view image target set. By fine 
tuning weights for the common feature extraction backbone for the final round model of AL, we 
improved the guardrail model accuracy from 84% to 90% evaluated on the balanced holdout test 
set and the pole model accuracy from 72% to 88%. Although fine tuning weights for the final 
model was justified by the big model accuracy improvement, a better designed common feature 
extraction backbone might be beneficial and remove the need for weight fine tuning. 
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Results 
Figure 6 and Figure 7 show ROC curves of the guardrail and utility pole models through 

AL evaluated on the respective balanced holdout test sets. As shown in the ROC curves, the final 
round of models with fine-tuned feature extraction weights had significant performance 
improvement over the AL models trained with the shared common feature extraction backbone. 
In addition, there was a big performance improvement in the first AL round guardrail model over 
the baseline model followed by minor performance improvement in subsequent AL rounds. 
Similarly, there was minor model performance improvement over AL rounds for the pole model.  
 

  
Figure 6. ROC Curve of Guardrail Models through AL                Figure 7. ROC Curve of Pole Models Through AL 

Conclusions 
Lessons Learned 

• AI can identify video frames containing safety-related roadside features: As shown 
above, AI image classification models are able to identify images containing roadside 
safety-related features with high accuracy. The models developed include both extended 
features (guardrails) and localized features (utility poles). Furthermore, thresholds can be 
tuned to favor either recall or precision to aid in particular use cases. The basic 
procedure, models, code, and tools are all fully extensible to both new features and may 
be deployed in other states. 

• A common backbone approach works well for training but must be relaxed to 
produce the best models: A novel feature of the current work is the use of a common 
computational backbone across models for different features. This exploits the fact that 
many computer vision models require similar decompositions of an image, which are 
then combined in specific ways to find specific features. The significance here is that use 
of this common backbone allows large portions of the model to be calculated once and 
then subsequently re-used, vastly reducing the computational time required to make 
predictions and therefore allowing a much faster turnaround time between human 
labeling of images and AI predictions of roadside features.  However, while the 
efficiency gains are critical in rapidly training the models, to achieve the highest accuracy 
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for an individual feature, we found that the common backbone must be allowed to 
slightly evolve as a fine-tuning step. 

• A combined team of roadway safety experts and AI researchers is integral to 
rapidly producing high-accuracy models: The success of this project was due to a team 
composed of many different skills and backgrounds including NCDOT safety 
professionals, safety researchers from HSRC, and AI and UI practitioners from RENCI 
and Volpe. This particular set of talents was critical in creating working tools in short 
order, drawing critically on the background of NCDOT personnel to define goals and 
provide insight into relevant problems and AI researchers to translate those goals into 
working tools and models. 

• Effectively integrating AI results into State DOT workflows will require moving 
beyond image classification: The image classification approach taken in this work is a 
low-cost approach to produce high-accuracy models relevant to NCDOT needs. 
However, the limitations inherent in this approach do limit its domain of applicability. 
Image classification only identifies that an image contains e.g., a utility pole. It does not 
describe where in the image the pole exists, nor does it describe that location in real 
world coordinates; poles near the road are identified, as are poles that are far from the 
road, and are therefore not relevant for lane-departure events.  In some circumstances, 
such as guardrails, the infrequency of the feature coupled with their paradigmatic location 
in images mitigates these problems, but for more frequent point features such as poles, 
being able to place the objects in space is critical for application of the models to actual 
DOT problems. 

• Project AI results integrated into State DOT roadway network: NCDOT was able to 
incorporate the project results for the continuous roadside object of guardrail and the 
point roadside object of utility pole onto the State GIS linear referencing system (Figure 8 
shows the NCDOT’s linear referencing system with location of guardrail; Figure 9 shows 
the location of utility poles). These information layers could be considered the first step 
in assessing network wide roadside risk. As mentioned in the previous bullet, videolog 
images screened through the safety tool can produce where guardrails and utility pole 
exist from the image perspective (i.e., “yes” or “no” for the distance of the image with 
respect to the distance the AI can view within the image). However, additional details 
such as exactly where a guardrail begins and ends and where a utility pole is exactly 
located can be future growth opportunities to this tool. The integration of AI 
methodologies to extract longitudinal and horizontal distance to a feature and side slope 
to a feature could improve upon the tool built in this project. In addition, future iterations 
of the tool could be developed to include more roadside continuous and point features for 
a more complete roadside inventory. A robust roadside feature inventory coupled with 
historical crash data could allow NCDOT to better assess potential risks along the large 
network of rural two-lane roads, and the prioritization of systemic safety countermeasure 
applications with limited safety dollar resources. 
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Figure 8. GIS Linear Referencing System with Guardrail Location 

 
Figure 9. GIS Linear Referencing System with Location of Utility Poles 

• The rate-limiting resource is labeled data: Building accurate models requires data to 
train the models, meaning images that a human has labeled as containing or not 
containing a specific feature of interest. Because it requires a person to view an image 
and, in some way, mark it, this process can be slow, but the amount of such data is one of 
the main factors in producing an accurate model. To mitigate this difficulty, we designed 
a UI system to allow users to efficiently annotate as many images as possible, and we 
used an active learning approach to choose the most influential images to label. While the 
combination of these tools minimized the amount of human time required for image 
labeling, this labeling still represented the main bottleneck. 

• Documentation and Information: The supporting documentation and information can 
be found at the following link: https://github.com/RENCI/ncdot-road-safety 

Further Work 
Extensions to the current work can focus on addressing the limitations noted above.  

Specifically, we see three straightforward paths to make the current work more directly useful to 
state DOT personnel. First, we suggest using a combination of AI and classical computer vision 
algorithms to move beyond the image classification paradigm and place located features directly 
into three-dimensional space. Second, recent advances in self-supervised learning can be 
employed to further reduce the number of images that must be hand-labeled. Finally, the 
incorporation of other data streams, such as NCDOT created airborne LIDAR data will allow a 
data fusion approach in which LIDAR can be used to extend models of interest, as well as 

https://github.com/RENCI/ncdot-road-safety
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providing information that is difficult to extract from the video data alone, such as ground 
topography. 
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